Powerpoint Presentation for Chapter 7 Forecasting

Do you require help with your paper? Use our custom writing service to achieve better grades and meet your deadlines. Trust our team of writing experts with your work today, and enjoy peace of mind.


Order a Similar Paper Order a Different Paper

I need a help with powerpoint presentation for this work below:

 

Statistics, Data Analysis, and Decision Modeling

 

FOURTH EDITION

James R. Evans

 

9780558689766

Chapter 7 Forecasting

Introduction

 

QUALITATIVE AND JUDGMENTAL METHODS

Historical Analogy

The Delphi Method

Indicators and Indexes for Forecasting

 

STATISTICAL FORECASTING MODELS

 

FORECASTING MODELS FOR STATIONARY TIME SERIES

Moving Average Models

Error Metrics and Forecast Accuracy

Exponential Smoothing Models

 

FORECASTING MODELS FOR TIME SERIES WITH TREND AND SEASONALITY

Models for Linear Trends

Models for Seasonality

Models for Trend and Seasonality

 

CHOOSING AND OPTIMIZING FORECASTING MODELS USING CB PREDICTOR

 

REGRESSION MODELS FOR FORECASTING

Autoregressive Forecasting Models

Incorporating Seasonality in Regression Models

Regression Forecasting with Causal Variables

 

THE PRACTICE OF FORECASTING

 

BASIC CONCEPTS REVIEW QUESTIONS

 

SKILL-BUILDING EXERCISES

SKILL-BUILDING EXERCISES

 

PROBLEMS AND APPLICATIONS

 

CASE: ENERGY FORECASTING

 

APPENDIX: ADVANCED FORECASTING MODELS—THEORY AND COMPUTATION

Double Moving Average

Double Exponential Smoothing

Additive Seasonality

Multiplicative Seasonality

Holt–Winters Additive Model

Holt– –Winters Multiplicative Model

INTRODUCTION

 

One of the major problems that managers face is forecasting future events in order to make good decisions. For example, forecasts of interest rates, energy prices, and other economic indicators are needed for financial planning; sales forecasts are needed to plan production and workforce capacity; and forecasts of trends in demographics, consumer behavior, and technological innovation are needed for long-term strategic planning. The government also invests significant resources on predicting short-run U.S. business performance using the Index of Leading Indicators. This index focuses on the performance of individual businesses, which often is highly correlated with the performance of the overall economy, and is used to forecast economic trends for the nation as a whole. In this chapter, we introduce some common methods and approaches to forecasting, including both qualitative and quantitative techniques.

Managers may choose from a wide range of forecasting techniques. Selecting the appropriate method depends on the characteristics of the forecasting problem, such as the time horizon of the variable being forecast, as well as available information on which the forecast will be based. Three major categories of forecasting approaches are qualitative and judgmental techniques, statistical time-series models, and explanatory/causal methods.

 

Qualitative and judgmental techniques rely on experience and intuition; they are necessary when historical data are not available or when the decision maker needs to forecast far into the future. For example, a forecast of when the next generation of a microprocessor will be available and what capabilities it might have will depend greatly on the opinions and expertise of individuals who understand the technology.

 

Statistical time-series models find greater applicability for short-range forecasting problems. A time series is a stream of historical data, such as weekly sales. Time-series models assume that whatever forces have influenced sales in the recent past will continue into the near future; thus, forecasts are developed by extrapolating these data into the future.

Explanatory/causal models seek to identify factors that explain statistically the patterns observed in the variable being forecast, usually with regression analysis. While time-series models use only time as the independent variable, explanatory/causal models generally include other factors. For example, forecasting the price of oil might incorporate independent variables such as the demand for oil (measured in barrels), the proportion of oil stock generated by OPEC countries, and tax rates. Although we can never prove that changes in these variables actually cause changes in the price of oil, we often have evidence that a strong influence exists.

Surveys of forecasting practices have shown that both judgmental and quantitative methods are used for forecasting sales of product lines or product families, as well as for broad company and industry forecasts. Simple time-series models are used for short- and medium-range forecasts, whereas regression analysis is the most popular method for long-range forecasting. However, many companies rely on judgmental methods far more than quantitative methods, and almost half judgmentally adjust quantitative forecasts.

In this chapter, we focus on these three approaches to forecasting. Specifically, we will discuss the following:

Historical analogy and the Delphi method as approaches to judgmental forecasting

Moving average and exponential smoothing models for time-series forecasting, with a discussion of evaluating the quality of forecasts

A brief discussion of advanced time-series models and the use of Crystal Ball (CB) Predictor for optimizing forecasts

The use of regression models for explanatory/causal forecasting

Some insights into practical issues associated with forecasting

Qualitative and Judgmental Methods

Qualitative, or judgmental, forecasting methods are valuable in situations for which no historical data are available or for those that specifically require human expertise and knowledge. One example might be identifying future opportunities and threats as part of a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis within a strategic planning exercise. Another use of judgmental methods is to incorporate nonquantitative information, such as the impact of government regulations or competitor behavior, in a quantitative forecast. Judgmental techniques range from such simple methods as a manager’s opinion or a group-based jury of executive opinion to more structured approaches such as historical analogy and the Delphi method.

Historical Analogy

One judgmental approach is historical analogy, in which a forecast is obtained through a comparative analysis with a previous situation. For example, if a new product is being introduced, the response of similar previous products to marketing campaigns can be used as a basis to predict how the new marketing campaign might fare. Of course, temporal changes or other unique factors might not be fully considered in such an approach. However, a great deal of insight can often be gained through an analysis of past experiences. For example, in early 1998, the price of oil was about $22 a barrel. However, in mid-1998, the price of a barrel of oil dropped to around $11. The reasons for this price drop included an oversupply of oil from new production in the Caspian Sea region, high production in non-OPEC regions, and lower-than-normal demand. In similar circumstances in the past, OPEC would meet and take action to raise the price of oil. Thus, from historical analogy, we might forecast a rise in the price of oil. OPEC members did in fact meet in mid-1998 and agreed to cut their production, but nobody believed that they would actually cooperate effectively, and the price continued to drop for a time. Subsequently, in 2000, the price of oil rose dramatically, falling again in late 2001. Analogies often provide good forecasts, but you need to be careful to recognize new or different circumstances. Another analogy is international conflict relative to the price of oil. Should war break out, the price would be expected to rise, analogous to what it has done in the past.

 

The Delphi Method

A popular judgmental forecasting approach, called the Delphi method, uses a panel of experts, whose identities are typically kept confidential from one another, to respond to a sequence of questionnaires. After each round of responses, individual opinions, edited to ensure anonymity, are shared, allowing each to see what the other experts think. Seeing other experts’ opinions helps to reinforce those in agreement and to influence those who did not agree to possibly consider other factors. In the next round, the experts revise their estimates, and the process is repeated, usually for no more than two or three rounds. The Delphi method promotes unbiased exchanges of ideas and discussion and usually results in some convergence of opinion. It is one of the better approaches to forecasting long-range trends and impacts.

Indicators and Indexes for Forecasting

Bottom of Form

Indicators and indexes generally play an important role in developing judgmental forecasts. Indicators are measures that are believed to influence the behavior of a variable we wish to forecast. By monitoring changes in indicators, we expect to gain insight about the future behavior of the variable to help forecast the future. For example, one variable that is important to the nation’s economy is the Gross Domestic Product (GDP), which is a measure of the value of all goods and services produced in the United States. Despite its shortcomings (for instance, unpaid work such as housekeeping and child care is not measured; production of poor-quality output inflates the measure, as does work expended on corrective action), it is a practical and useful measure of economic performance. Like most time series, the GDP rises and falls in a cyclical fashion. Predicting future trends in the GDP is often done by analyzing leading indicators—series that tend to rise and fall some predictable length of time prior to the peaks and valleys of the GDP. One example of a leading indicator is the formation of business enterprises; as the rate of new businesses grows, one would expect the GDP to increase in the future. Other examples of leading indicators are the percent change in the money supply (M1) and net change in business loans. Other indicators, called lagging indicators, tend to have peaks and valleys that follow those of the GDP. Some lagging indicators are the Consumer Price Index, prime rate, business investment expenditures, or inventories on hand. The GDP can be used to predict future trends in these indicators.

 

Indicators are often combined quantitatively into an index. The direction of movement of all the selected indicators are weighted and combined, providing an index of overall expectation. For example, financial analysts use the Dow Jones Industrial Average as an index of general stock market performance. Indexes do not provide a complete forecast, but rather a better picture of direction of change, and thus play an important role in judgmental forecasting.

 

The Department of Commerce began an Index of Leading Indicators to help predict future economic performance. Components of the index include the following:

 

•average weekly hours, manufacturing

•average weekly initial claims, unemployment insurance

•new orders, consumer goods and materials

•vendor performance—slower deliveries

•new orders, nondefense capital goods

•building permits, private housing

•stock prices, 500 common stocks (Standard & Poor)

•money supply

•interest rate spread

•index of consumer

•average weekly hours, manufacturing

•average weekly initial claims, unemployment insurance

•new orders, consumer goods and materials

•vendor performance—slower deliveries

•new orders, nondefense capital goods

•building permits, private housing

•stock prices, 500 common stocks (Standard & Poor)

•money supply

•interest rate spread

•index of consumer expectations (University of Michigan)

 

Business Conditions Digest included more than 100 time series in seven economic areas. This publication was discontinued in March 1990, but information related to the Index of Leading Indicators was continued in Survey of Current Business. In December 1995, the U.S. Department of Commerce sold this data source to The Conference Board, which now markets the information under the title Business Cycle Indicators; information can be obtained at its Web site (www.conference-board.org). The site includes excellent current information about the calculation of the index, as well as its current components.

 

 

Statistical Forecasting Models

 

Many forecasts are based on analysis of historical time-series data and are predicated on the assumption that the future is an extrapolation of the past. We will assume that a time series consists of T periods of data, At, = 1, 2, …, T. A naive approach is to eyeball a trend—a gradual shift in the value of the time series—by visually examining a plot of the data. For instance, Figure 7.1 shows a chart of total energy production from the data in the Excel file Energy Production & Consumption. We see that energy production was rising quite rapidly during the 1960s; however, the slope appears to have decreased after 1970. It appears that production is increasing by about 500,000 each year and that this can provide a reasonable forecast provided that the trend continues.

 

 

Figure 7.1 Total Energy Production Time Series

 

Figure 7.2 Federal Funds Rate Time Series

 

Time series may also exhibit short-term seasonal effects (over a year, month, week, or even a day) as well as longer-term cyclical effects or nonlinear trends. At a neighborhood grocery store, for instance, short-term seasonal patterns may occur over a week, with the heaviest volume of customers on weekends, and even during the course of a day. Cycles relate to much longer-term behavior, such as periods of inflation and recession or bull and bear stock market behavior. Figure 7.2 shows a chart of the data in the Excel file Federal Funds Rate. We see some evidence of long-term cycles in the time series.

 

Of course, unscientific approaches such as the “eyeball method” may be a bit unsettling to a manager making important decisions. Subtle effects and interactions of seasonal and cyclical factors may not be evident from simple visual extrapolation of data. Statistical methods, which involve more formal analyses of time series, are invaluable in developing good forecasts. A variety of statistically based forecasting methods for time series are commonly used. Among the most popular are moving average methods, exponential smoothing, and regression analysis. These can be implemented very easily on a spreadsheet using basic functions available in Microsoft Excel and its Data Analysis tools; these are summarized in Table 7.1. Moving average and exponential smoothing models work best for stationary time series. For time series that involve trends and/or seasonal factors, other techniques have been developed. These include double moving average and exponential smoothing models, seasonal additive and multiplicative models, and Holt–Winters additive and multiplicative models . We will review each of these types of models. This book provides an Excel add-in, CB Predictor, that applies these methods and incorporates some intelligent technology. We will describe CB Predictor later in this chapter.

 

 

Table 7.1 Excel Support for Forecasting

 

 

 

 

Excel Functions                                                          Description

 

TREND (known_y’s, known_x’s, new_x’s, constant)

Returns values along a linear trend line

LINEST(known_y’s, known_x’s, new_x’s, constant, stats)

Returns an array that describes a straight line that best fits the data

FORECAST(x, known_y’s, known_x’s)

Calculates a future value along a linear trend

Analysis Toolpak

Description

 

Moving average              Projects forecast values based on the                          

           average value of the variable over a specific number of preceding periods

Exponential smoothing           Predicts a value based on the forecast for the          

                                                prior period, adjusted for the error in that prior forecast

Regression                Used to develop a model relating time-series data to a set of   

                                  variables assumed to influence the data

 

Forecasting Models for Stationary Time Series

Two simple approaches that are useful over short time periods when trend, seasonal, or cyclical effects are not significant are moving average and exponential smoothing models.

Moving Average Models

The simple moving average method is based on the idea of averaging random fluctuations in the time series to identify the underlying direction in which the time series is changing. Because the moving average method assumes that future observations will be similar to the recent past, it is most useful as a short-range forecasting method. Although this method is very simple, it has proven to be quite useful in stable environments, such as inventory management, in which it is necessary to develop forecasts for a large number of items.

Specifically, the simple moving average forecast for the next period is computed as the average of the most recent k observations. The value of k is somewhat arbitrary, although its choice affects the accuracy of the forecast. The larger the value of k, the more the current forecast is dependent on older data; the smaller the value of k, the quicker the forecast responds to changes in the time series. (In the next section, we discuss how to select k by examining errors associated with different values.)

 

For instance, suppose that we want to forecast monthly burglaries from the Excel file Burglaries since the citizen-police program began. Figure 7.3 shows a chart of these data. The time series appears to be relatively stable, without trend, seasonal, or cyclical effects; thus, a moving average model would be appropriate. Setting k = 3, the three-period moving average forecast for month 59 is:

Moving average forecasts can be generated easily on a spreadsheet. Figure 7.4 shows the computations for a three-period moving average forecast of burglaries. Figure 7.5 shows a chart that contrasts the data with the forecasted values. Moving average forecasts can also be obtained from Excel’s Data Analysis options (see Excel Note: Forecasting with Moving Averages).

 

 

Figure 7.3 Monthly Burglaries Chart

In the simple moving average approach, the data are weighted equally. This may not be desirable because we might wish to put more weight on recent observations than on older observations, particularly if the time series is changing rapidly. Such models are called weighted moving averages. For example, you might assign a 60% weight to the most recent observation, 30% to the second most recent observation, and the remaining 10% of the weight to the third most recent observation. In this case, the three-period weighted moving average forecast for month 59 would be:

EXCEL NOTE Forecasting with Moving Averages

From the Analysis group, select Data Analysis then Moving Average. Excel displays the dialog box shown in Figure 7.6. You need to enter the Input Range of the data, the Interval (the value of k), and the first cell of the Output Range. To align the actual data with the forecasted values in the worksheet, select the first cell of the Output Range to be one row below the first value. You may also obtain a chart of the data and the moving averages, as well as a column of standard errors, by checking the appropriate boxes. However, we do not recommend using the chart or error options because the forecasts generated by this tool are not properly aligned with the data (the forecast value aligned with a particular data point represents the forecast for the next month) and, thus, can be misleading. Rather, we recommend that you generate your own chart as we did in Figure 7.5. Figure 7.7 shows the results produced by the Moving Average tool (with some customization of the forecast chart to show the months on the x-axis). Note that the forecast for month 59 is aligned with the actual value for month 58 on the chart. Compare this to Figure 7.5 and you can see the difference.

 

Page 244

 

Figure 7.6 Excel Moving Average Tool Dialog

 

Figure 7.7 Results of Excel Moving Average Tool (note misalignment of forecasts with actual in the chart)

Different weights can easily be incorporated into Excel formulas. This leads us to the questions of how to measure forecast accuracy and also how to select the best parameters for a forecasting model.

 

Error Metrics and Forecast Accuracy

 

The quality of a forecast depends on how accurate it is in predicting future values of a time series. The error in a forecast is the difference between the forecast and the actual value of the time series (once it is known!). In Figure 7.5, the forecast error is simply the vertical distance between the forecast and the data for the same time period. In the simple moving average model, different values for k will produce different forecasts. How do we know, for example, if a two- or three-period moving average forecast or a three-period weighted moving average model (orothers) would be the best predictor for burglaries? We might first generate different forecasts using each of these models, as shown in Figure 7.8, and compute the errors associated with each model.

 

 

Figure 7.8 Alternative Moving Average Forecasting Models

 

To analyze the accuracy of these models, we can define error metrics, which compare quantitatively the forecast with the actual observations. Three metrics that are commonly used are the mean absolute deviation, mean square error, and mean absolute percentage error. The mean absolute deviation (MAD) is the absolute difference between the actual value and the forecast, averaged over a range of forecasted values:

 

where At is the actual value of the time series at time t, Ft is the forecast value for time t, and n is the number of forecast values (not the number of data points since we do not have a forecast value associated with the first k data points). MAD provides a robust measure of error and is less affected by extreme observations.

 

Mean square error (MSE) is probably the most commonly used error metric. It penalizes larger errors because squaring larger numbers has a greater impact than squaring smaller numbers. The formula for MSE is:

 

Again, n represents the number of forecast values used in computing the average. Sometimes the square root of MSE, called the root mean square error (RMSE), is used.

 

 

Table 7.2 Error Metrics for Moving Average Models of Burglary Data

 

 

k = 2         k = 3         3-Period Weighted

 

"Is this question part of your assignment? We can help"

ORDER NOW
Writerbay.net

Do you need help with this or a different assignment? We offer CONFIDENTIAL, ORIGINAL (Turnitin/LopesWrite/SafeAssign checks), and PRIVATE services using latest (within 5 years) peer-reviewed journal articles. Kindly click on ORDER NOW to receive an A++ paper from our masters- and PhD writers.

Get a 15% discount on your order using the following coupon code SAVE15


Order a Similar Paper Order a Different Paper